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Abstract. We show that the non-strange scalar σ meson, as now reported in the 1996 PDG tables, is a
natural consequence of crossing symmetry as well as chiral dynamics for both strong interaction low energy
ππ scattering and also K → 2π weak decays.

1 Introduction

The 1996 Particle Data Group (PDG) tables [1] now in-
cludes a broad non-strange I=0 scalar σ resonance referred
to as f0 (400-1200). This is based in part on the Törnqvist-
Roos [2] re-analysis of low energy ππ scattering, finding
a broad non-strange σ meson in the 400-900 MeV region
with pole position

√
s0 = 0.470 - i 0.250 GeV. Several later

comments in PRL [3–5] all stress the importance of reject-
ing [3] or confirming [4, 5] the above Törnqvist-Roos [2]
σ meson analysis based on (t-channel) crossing symmetry
of this ππ process.

In this brief report we offer such a σ meson-inspired
crossing symmetry model in support of [2, 4, 5] based
on chiral dynamics for strong interaction ππ scattering
(Sect. 2). This in turn supports the recent s-wave ππ phase
shift analyses [6] in Sect. 3 using a negative background
phase obtaining a broad σ resonance in the 535-650 MeV
mass region. This is more in line with the prior analysis of
[5] and with the dynamically generated quark-level linear
σ model (LσM) theory of [7] predicting mσ ≈ 650 MeV.
Section 4 looks instead at processes involving two final-
state pions where crossing symmetry plays no role, such
as for the DM2 experiment [8] J/Ψ → ωππ and for πN
→ ππN polarization measurements [9]. Section 5 extends
the prior crossing-symmetric strong interaction chiral dy-
namics to the non-leptonic weak interaction ∆I = 1

2 decays
K◦ → 2π. We give our conclusions in Sect. 6.

2 Strong interactions, crossing symmetry
and the σ meson

It has long been understood [10–12] that the non-strange
isospin I=0 σ meson is the chiral partner of the I=1 pion.
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In fact Gell-Mann-Lévy’s [10, 11] nucleon-level LσM re-
quires the meson-meson couplings to satisfy (with fπ ≈
93 MeV)

gσππ =
m2

σ − m2
π

2fπ
= λfπ , (1)

where gσππ and λ are the cubic and quartic meson cou-
plings respectively. On the other hand, the σ meson pole
for the ππ scattering amplitude at the soft point s = m2

π

using (1) becomes

Mσpole
ππ =

2g2
σππ

s − m2
σ

→ 2g2
σππ

m2
π − m2

σ

= −λ = −M contact
ππ . (2)

The complete tree-level LσM ππ amplitude is the sum
of the quartic contact amplitude λ plus σ poles added in a
crossing symmetric fashion from the s, t and u-channels.
Using the chiral symmetry soft-pion limit (2) combined
with the (non-soft) Mandelstam relation s + t + u = 4m2

π,
the lead λ contact ππ amplitude approximately
cancels [11]. Not surprisingly, the resulting net πaπb →
πcπd amplitude in the LσM is the low energy model-
independent Weinberg amplitude [13].

Mππ =
s − m2

π

f2
π

δabδcd +
t − m2

π

f2
π

δacδbd

+
u − m2

π

f2
π

δadδbc , (3)

due to partial conservation of axial currents (PCAC) ap-
plied crossing-consistently to all three s, t, u-channels. Re-
call that the underlying PCAC identity ∂Ai = fπm2

πφi
π,

upon which the Weinberg crossing-symmetric PCAC re-
lation (3) is based, was originally obtained from the LσM
lagrangian [10, 11].

Although the above (LσM) Weinberg PCAC ππ am-
plitude (3) predicts an s-wave I=0 scattering length [13]
a
(0)
ππ = 7mπ/32πf2

π ≈ 0.16 m−1
π which is ∼30% less than
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Fig. 1. a Quark box, b quark triangle graphs for A1 → 3π

first obtained from K`4 data [14], more precise experi-
ments are now under consideration. Moreover a simple
chiral-breaking scattering-length correction ∆a0

ππ follows
from the LσM using a Weinberg-like crossing-symmetric
form [15]

Mabcd
ππ = A(s, t, u)δabδcd + A(t, s, u)δacδbd

+A(u, t, s)δadδbc , (4)

ALσM (s, t, u) = −2λ

[
1 − 2λf2

π

m2
σ − s

]

=
(

m2
σ − m2

π

m2
σ − s

) (
s − m2

π

f2
π

)
, (5)

where the LσM Eq. (1) has been used to obtain the second
form of (5). Then the I=0 s-channel amplitude 3A(s, t, u)
+ A(t, s, u) + A(u, t, s) predicts the s-wave scattering
length at s = 4m2

π, t = u = 0 using the LσM amplitude
(5) with ε = m2

π/m2
σ ≈ 0.046 for the LσM mass [7] mσ ≈

650 MeV:

a(0)
ππ |LσM ≈

(
7 + ε

1 − 4ε

)
mπ

32πf2
π

≈ (1.23)
7mπ

32πf2
π

≈ 0.20m−1
π . (6)

This simple 23% LσM enhancement of the Weinberg
PCAC prediction [13] agrees in magnitude with the much
more complicated one-loop order chiral perturbation the-
ory approach [16] which also predicts an s-wave scattering
length correction of order ∆a0

ππ ∼ 0.04m−1
π . This indi-

rectly supports a σ(650) scalar meson mass scale as used
in (6).

The above exact (chiral symmetry) cancellation, due
to (1) and (2) has been extended to final-state pionic
processes A1 → π(ππ)s−wave [17], γγ → 2π0 [18] and
π−p → π−π+n. In all of these cases the above LσM
chiral cancellation is simulated by a (non-strange) quark
box – quark triangle cancellation due to the Dirac-matrix
identity [17, 18]

1
γ.p − m

2mγ5
1

γ.p − m
= −γ5

1
γ.p − m

− 1
γ.p − m

γ5 , (7)

combined with the quark-level Goldberger relation (GTR)
fπgπqq = mq and the LσM meson couplings in (1).

Then the u, d quark box graph in Fig. 1a for A1 → 3π
in the chiral limit exactly cancels the quark triangle graph
of Fig. 1b coupled to the σ meson because of the GTR and

the LσM chiral meson identity (1) along with the minus
signs on the right-hand-side (rhs) of (7):

Mbox
A13π + M tri

A13π → − 1
fπ

M(A1 → σπ) +
1
fπ

M(A1 → σπ)

= 0 . (8)

This soft pion theorem [17] in (8) is compatible with the
PDG tables [1] listing the decay rate Γ [A1 → π(ππ)sw] =
1 ± 1 MeV.

Similarly, the γγ → 2π0 quark box graph suppresses
the quark triangle σ resonance graph in the 700 MeV re-
gion, also compatible with γγ → 2π0 cross section
data [18]. Finally, the peripheral pion in π−p → π−π+n
sets up an analogous ππ or quark box – quark trian-
gle s-wave soft pion cancellation which completely sup-
presses any such σ resonance – also an experimental fact
for π−p → π−π+n.

3 ππ phase shifts

The above approximate (chiral) cancellation in ππ → ππ,
A1 → 3π, γγ → 2π0 and π−p → π−π+n amplitudes and in
data lends indirect support to the analyses of [2, 4, 5]. Ref-
erence [3] claims instead that the I=0 and I=2 ππ phase
shifts require t-channel forces due to “exotic”, crossing-
asymmetric resonances in the I= 3

2 and 2 cross-channels
rather than due a broad low-mass scalar σ meson (in the
s-channel). We suggest that this latter picture in [3] does
not take account of the crossing-symmetric extent of the
chiral ππ forces in all three s, t and u-channels, leading to
the above approximate chiral cancellation.

Specifically the recent ππ phase shift analyses in [6] use
a negative background phase approach compatible with
unitarity. This background phase has a hard core of size
rc ≈ 0.63 fm (the pion charged radius) such that δBG =
−pCM

π rc. Combining this background phase with the ob-
served ππ phase shifts (e.g., of CERN-Munich or Cason et
al.), the new I=0 phase shift goes through 90◦ resonance
in the range 535-650 MeV, while the I=2 phase shift does
not resonate but remains negative as observed. [6] justify
this background phase approach because of the “compen-
sating λφ4 contact (LσM) interaction”. From our Sect. 2
we rephrase this as due to the crossing symmetric LσM
chiral approximate cancellation [11] which recovers Wein-
berg’s [13] PCAC ππ amplitude in our (3).

Then [6] choose a slightly model-dependent form fac-
tor F(s) (designed to fit the lower energy region below
400 MeV) along with the best-fitted σ → ππ effective
coupling (double the LσM field theory coupling (1)). This
gives the resonant σ width [6]

ΓR(s) =
pCM

π

8πs
[gRF (s)]2 ≈ 340 MeV at

√
sR ≈ 600 MeV, gR ≈ 3.6 GeV , (9)

for pCM
π =

√
s/4 − m2

π ≈ 260 MeV. However, the decay
width in (9) accounts only for σ → π+π− decay. To include
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as well the σ → π0π0 decay mode, one must scale up (9)
by a factor of 3/2:

Γσ→2π =
3
2
ΓR(s) ≈ 510 MeV , (10)

not incompatible with [1, 2, 5] but still slightly below
Weinberg’s recent mended chiral symmetry (MCS)
prediction [19]

ΓMCS
σ→2π =

9
2
Γρ ≈ 680 MeV , (11a)

or the LσM decay width [15]

ΓLσM
σ→2π =

3
2

pCM
π

8π

(2gσππ)2

m2
σ

≈ 580 MeV , (11b)

for mσ ≈ 600 MeV. Note too that the best fit σ → π+π−
effective coupling in [6] of 3.60 GeV is close to the LσM
value in (1) at mR

σ ≈ 600 MeV:

gR → 2gσππ = (m2
σ − m2

π)/fπ ≈ 3.66 GeV . (12)

4 Crossing-asymmetric determinations
of σ (600-750)

With hindsight, the clearest way to measure the σ → ππ
signal is to avoid ππ → ππ, γγ → 2π◦, π−p → π−π+n
scatterings or A1 → π(ππ)sw decay, since these processes
are always plagued by the ππ exact chiral cancellation in
(2) or an underlying quark box – triangle cancellation due
to (7) as in (8). First consider the 1989 DM2 experiment
[8] J/Ψ → ωππ. Their Fig. 13 fits of the π+π− and π◦π◦
distributions clearly show the known non-strange narrow
f2(1270) resonance along with a broad σ(500) “bump”
(both bumps are non-strange and the accompanying ω
is 97% non-strange). Moreover, DM2 measured the (low
mass) σ width as [8]

ΓDM2
σ→ππ = 494 ± 58 MeV , (13)

very close to the modified [6] σ width fit of 510 MeV in
(10).

Finally, this Fig. 13 of DM2 [8] clearly shows that the
nearby f0(980) bump in the ππ distribution is only a “pim-
ple” by comparison. This suggests that the observed [1]
f0(980) → ππ decay mode proceeds via a small σ−f0 mix-
ing angle and that f0(980) is primarily an ss meson, com-
patible with the analyses of [2, 20]. However, such a con-
clusion is not compatible with the qqqq or KK molecule
studies noted in [3].

Lastly, polarization measurements are also immune to
the (spinless) approximate chiral cancellation [11] in ππ →
ππ. This detailed polarization analysis of [9]
approximately obtains the ρ (770) mass and 150 MeV de-
cay width. While the resulting σ mass of 750 MeV is well
within the range reported in the 1996 PDG [1] and closer
to the σ mass earlier extracted from ππ → KK studies in
[21], the inferred σ width of Γσ ∼ 200 − 300 MeV in [9]
is much narrower than reported in [1, 2, 8, 21] or in our
above analysis.

Fig. 2. ∆I=1/2 t-channel K◦ tadpole graph for K◦ → 2π

Fig. 3. ∆I=1/2 s-channel σ pole graph for K◦ → 2π

5 K◦ → 2π weak decays
and the σ(600-700) meson

To show that the σ(600-700) scalar meson also arises with
chiral crossing-symmetric weak forces, we consider the
∆I=1/2 – dominant K◦ → 2π decays. To manifest such a
∆I=1/2 transition, we first consider the virtual K◦ I = 1

2
meson t-channel tadpole graph of Fig. 2. Here the weak
tadpole transition < 0|Hw|K◦ > clearly selects out the
∆I=1/2 part of the parity-violating component of Hw,
while the adjoining strong interaction K◦K

◦ → ππ is the
kaon analogue of the t-channel ππ → ππ, with Weinberg-
type PCAC [22] amplitude (t − m2

π)/2f2
π for t = (pK −

0)2 = m2
K . Then the ∆I=1/2 amplitude magnitude is [23]

| < ππ|Hw|K◦ > |
=

| < 0|Hw|K◦ > |
2f2

π

(1 − m2
π/m2

K) . (14)

A crossed version of this ∆I=1/2 transition (14) is due
to the s-channel I=0 σ meson pole graph of Fig. 3 at s =
m2

K [24]. This leads to the ∆I=1/2 amplitude magnitude

| < ππ|Hw|K◦ > | (15a)

= | < ππ|σ >
1

m2
K − m2

σ + imσΓσ
< σ|Hw|K◦ > | .

Applying chiral symmetry < σ|Hw|K◦ >=< π◦|Hw|K◦ >
(converting the former parity-violating to the latter
parity-conserving transition) along with the LσM values
| < ππ|σ > | = m2

σ/fπ from (1) and Γσ ≈ mσ to (15a), one
sees that the σ mass scale cancels out of (15a), yielding
[25]

| < ππ|Hw|K◦ > | ≈ | < π◦|Hw|K◦ > /fπ| . (15b)

Not only has (15b) been derived by other chiral meth-
ods [26], but (15b) also is equivalent to (14) in the mπ = 0
chiral limit because weak chirality [Q, Hw] = −[Q5, Hw]
for V-A weak currents and PCAC clearly require | <
π◦|Hw|K◦ > | ≈ | < 0|Hw|K◦ > /2fπ|, as needed.

Thus, we see that the existence of an I=0 scalar σ me-
son below 1 GeV manifests crossing symmetry (from the
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t to the s-channel) for the dominant ∆I=1/2 equivalent
amplitudes (14) and (15b). Further use of the quark model
and the GIM mechanism [27] converts the K◦

2π amplitudes
in (14) or (15b) to the scale [23] 24 × 10−8 GeV, close to
the observed K◦

2π amplitudes [1].
While the ∆I=1/2 K◦ → 2π decays are controlled by

the tadpole diagram in Fig. 2 (similar to ∆I=1 Coleman-
Glashow tadpole for electromagnetic (em) mass
splittings [28, 29]), the smaller ∆I=3/2 K+ → 2π am-
plitude is in fact suppressed by “exotic” I=3/2 meson
cross-channel Regge trajectories [30] (in a manner simi-
lar to the I=2 cross-channel exotic Regge exchange for the
π+−π◦ em mass difference [31]). This latter duality nature
of crossing symmetry for exotic I=3/2 and I=2 channels
was invoked in [3] to reject the low mass σ meson scheme
reported in the 1996 PDG tables [1] based in part on
the data analysis of [2]. That is, for exotic I=2 and I=3/2
(t-channel) dual exchanges, the dynamical dispersion re-
lations thus generated are unsubtracted, so that one can
then directly estimate the observed ∆I=2 em mass dif-
ferences [32] and also the ∆I=3/2 weak K+

2π decay ampli-
tude [33]. However, for I=1 and I=1/2 dual exchanges, the
resulting dispersion relations are once-subtracted, with
subtraction constants corresponding to contact ∆I=1 and
∆I=1/2 tadpole diagrams for em and weak transitions, re-
spectively. Contrary to [3], we instead suggest that these
duality pictures for exotic I=3/2 and I=2 channels of [30,
31] in fact help support the existence of the I=0 chiral σ
meson in [2, 4–7].

6 Summary

We have studied both strong and weak interactions in-
volving two final-state pions at low energy, using chiral
and crossing symmetry to reaffirm the existence of the
low-mass I=0 scalar σ meson below 1 GeV. This supports
the recent phenomenological data analyses in [2, 4–6] and
the quark-level linear σ model [LσM] theory of [7].

In Sect. 2 we focussed on ππ scattering and the cross-
ing symmetry approximate chiral cancellation [11] in the
LσM and its extension to the quark box – quark triangle
soft pion cancellation [17, 18]. Such chiral cancellations in
ππ → ππ, A1 → 3π, γγ → 2π0, π−p → π−π+n in turn
suppress the appearance of the σ(600-700) meson. Then
in Sect. 3 we supported the recent re-analyses [6] of ππ
phase shift data invoking a negative background phase.
This led to an I=0 σ meson in the 535-650 MeV region,
but with a broader width Γσ ∼ 500 MeV than found in [6]
(but not incompatible with the 1996 PDG σ width [1]).

In Sect. 4 we briefly reviewed two different crossing-
asymmetric determinations of the I=0 σ(600-750) which
circumvent the above crossing-symmetric approximate
chiral suppression of the σ meson. Finally, in Sect. 5 we
reviewed how the low mass I=0 σ meson s-channel pole
for ∆I=1/2 K0 → 2π decays is needed to cross over to the
t-channel ∆I=1/2 tadpole graph (which in turn fits data).
This ∆I=1/2 crossing-symmetry K → ππ picture was also
extended by crossing duality to justify why the (much
smaller) ∆I=3/2 K+

2π decay is controlled by exotic I=3/2

t-channel Regge trajectories [30], while the above I=1/2
dispersion relation has a (tadpole) non-exotic Regge sub-
traction constant.

To verify that the above chiral scheme in fact favors
a ground state broad scalar mass σ (600-700) over the
higher and narrower ε (1300), we note that

i) even though the σ (600-700) is greatly suppressed
by the null soft pion theorems (SPT) of Sect. 2, a positive
signal of this suppression is the prominent (SPT) dip in
the γγ → 2π0 cross section in the 600-700 MeV region but
not in the 1300 MeV vicinity [34];

ii) the KEK negative background phase approach of
Sect. 3 finds a broad σ (535-650) resonance from ππ phase
shifts, but does not recover the ε (1300) [6];

iii) although the original nucleon level L σ M [10] finds
no (tree order) constraint for the σ mass scale, the quark-
level L σ M predicts at one-loop order a nonstrange σ
(650), but no ε (1300) [7];

iv) the DM2 experiment [8] for J/Ψ → ωππ does ob-
serve a broad σ (500) bump (but not an ε (1300)) in the
ππ distribution;

v) the Ko → 2π amplitude via the σ pole in (15a) gen-
erating the observed magnitude [25, 26] | < ππ|Hw|K0 >
| ∼ 26 ×10−8 GeV when |m2

K −m2
σ| << mσΓσ in the de-

nominator of (15a) (as for a LσM σ (650)), would predict
instead a decay rate 60% shy of data using instead an ε
(1300) and moreover the chiral link between (14) and (15)
would then be severed;

vi) the original q2q2 bag model estimate of the non-
strange scalar mass finds [35] mσ ≈ 700 MeV and not
1300 MeV.
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